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bstract

Immobilization of chlorinated solvents with hydropropyl and methyl cyclodextrins (CDs) was observed by head-space analysis to obtain the
tability constants in single and multiple component systems. In each single component system, the highest stability constant was 0.299 mM−1

or perchloroethylene (PCE) by methyl-�-cyclodextrin (M-�-CD), 0.136 mM−1 for trichloroethylene (TCE) by M-�-CD, 0.106 mM−1 for cis-
ichloroethylene (cis-DCE) by hydropropyl-�-cyclodextrin, and 0.090 mM−1 for trans-dichloroethylene (trans-DCE) by M-�-CD. When HP-�-CD

nd M-�-CD were used, the stability constants of PCE and TCE increased and those of DCEs decreased in a multiple component system. Differences
n stability constants of single and multiple component systems thus should be important parameters when cyclodextrins are applied to solubilization
f multiple chlorinated solvents.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Chlorinated solvents have been listed as major organic con-
aminants in soil and water. Used in dry-cleaning and degreasing
peration, these chemicals are commonly found in the environ-
ent as a result of accident spillage or poor disposal practices.
hese compounds are known to cause health problems such as

iver and kidney disorders and are suspected carcinogens. Once
eleased into the environment, chlorinated solvents persist in
he subsurface via formation of dense nonaqueous phase liquid
DNAPL) pools at the bottom of aquifers because of their low
queous solubility and high density [1–4].

Cyclodextrins (CDs) have a low-polarity cavity in which
rganic compounds of appropriate shape and size can form
nclusion complexes. This unique property provides CDs with
apacity to significantly increase the apparent solubility of low
olarity organic contaminants such as aromatic hydrocarbons

5], polycyclic aromatic hydrocarbons [6,7], chlorinated sol-
ents [3,4,8,9], herbicides [10], pesticides [11], phenols [12,13],
nd various organics [2,14,15].

∗ Corresponding author. Tel.: +82 42 869 3924; fax: +82 42 869 3910.
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The majority of studies, that have been performed for the sol-
bilization of chlorinated solvents by cyclodextrins, are limited
o single contaminant [4,15]. In real fields, however, most of
ontaminated soil and groundwater are polluted with multiple
omponent DNAPLs [1,2]. Thus, the purpose of this study was
o investigate the immobilization of single and multiple com-
onent chlorinated solvents by cyclodextrin derivatives, which
as analyzed with respect to stability constants.

. Materials and methods

.1. Materials

Cyclodextrins (2-hydropropyl-�-cyclodextrin (HP-�-
D), 2-hydropropyl-�-cyclodextrin (HP-�-CD), 2-hydropro-
yl-�-cyclodextrin (HP-�-CD), and randomized methyl-�-
yclodextrin (M-�-CD)) and chlorinated solvents (per-
hloroethylene (PCE) and trichloroethylene (TCE)) were
urchased from Aldrich Chemical Company (Milwaukee, WI,

SA). Dichloroethylenes (trans-dichloroethylene (trans-DCE)

nd cis-dichloroethylene (cis-DCE)) were purchased from TCI
Tokyo, Japan). The physical properties of CDs and chlorinated
olvents are summarized in Tables 1 and 2, respectively. The

mailto:jwyang@kaist.ac.kr
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Table 1
Selected physical properties of cyclodextrin derivatives [16]

Cyclodextrin Substitution MW Cavity volume (nm3)

HP-�-CD 0.6 1180 0.174
HP-�-CD 0.6 1380 0.262
HP-�-CD 0.6 1576 0.427
M-�-CD 1.8 1312 0.262

Table 2
Selected physicochemical properties of chlorinated solventsa

Name PCE TCE trans-DCE cis-DCE

Formula C2Cl4 C2HCl3 C2H2Cl2 C2H2Cl2
Molecular weight (g/mol) 165.83 131.39 96.95 96.95
Liquid density (g/cm3) 1.613 1.4578 1.2649 1.2444
Molecular volume (nm3)b 0.170 0.150 0.127 0.129
Henry’s constantc 0.699 0.417 0.386 0.186
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a All values are at 25 ◦C.
b Calculated from liquid density and molecular weight.
c Measured for this work and is dimensionless.

ater used in this study was purified by EASYpure water
urification system (Barnstead, USA) and had an initial
esistivity of 18.3 M� cm. All chemicals were used without
urther purification.

.2. Methods

Immobilization of chlorinated solvents in CDs was deter-
ined by head-space analysis in a batch system [3,9,11,14] that
as performed in an open-top screw cap vial (20 ml) equipped
ith a teflon-coated silicon septum. A 10 ml sample containing

he desired amount of CDs (from 0.5 to 5 wt%) and chlorinated
olvents was shaken for 5 h at 25 ◦C in order to achieve phase
quilibrium. In preliminary test, 5 h was enough to reach equilib-
ium. One hundred microliters of head space was sampled with
gas tight syringe and immediately injected into the gas chro-
atograph (GC 6890 series II, Hewlett Packard) coupled with
flame ionization detector (FID). A HP-5 (Hewlett-Packard,

0 m × 0.25 mm) chromatographic capillary column was used.
he GC settings were programmed as the following: injec-

or temperature, 250 ◦C; initial column temperature, 40 ◦C for
min; then ramped to 190 ◦C at a rate of 20 ◦C/min; detector

emperature, 280 ◦C.

.3. Theory

The amount of chlorinated solvents immobilized into
yclodextrins was obtained by following equation:

CD-S = MS-I − MS-aq − MS-v (1)

here MCD-S, MS-I, MS-aq, and MS-v are the moles of chlorinated

olvents immobilized in the CD, initial moles added to the vial,
n the aqueous phase, and in the vapor phase, respectively. The
hlorinated solvent concentration in the vapor phase was deter-
ined by GC and that in the aqueous phase was calculated by
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enry’s law:

S-aq = H × CS-v (2)

here CS-aq, CS-v, and H represent the concentration of chlori-
ated solvents in aqueous phase, in vapor phase, and dimen-
ionless Henry’s constant for chlorinated solvents, respec-
ively.

The immobilization of chlorinated solvents by cyclodex-
rins is described as the formation of 1:1 inclusion complexes
10,15]:

+ CD ↔ CD-S (3)

here S is the uncomplexed chlorinated solvents, CD the uncom-
lexed cyclodextrins, and CD-S is the complexed solutes in the
queous phase. The stability constants (Ks, mM−1) of the com-
lex can be determined by

s = CCD−S

CS−aq × CCD
(4)

here CCD is the concentration of uncomplexed cyclodextrins
n aqueous phase.

. Results and discussion

Fig. 1 shows the stability constants for PCE, TCE, trans-
CE, and cis-DCE in HP-�-CD, HP-�-CD, HP-�-CD, and
-�-CD in single component (Fig. 1A) and multiple com-

onent (Fig. 1B) systems. For PCE, the stability constants in
P-�-CD and M-�-CD were 0.279 and 0.299 mM−1, respec-

ively. Stability constants in HP-�-CD and HP-�-CD were very
ow (0.030 and 0.056) compared to HP-�-CD and M-�-CD.
or TCE, stability constants in HP-�-CD, HP-�-CD, and M-
-CD were similar as 0.136, 0.119, and 0.136, respectively.
tability constants in DCEs in HP-�-CD were the highest
alue among the tested CDs. Stability constants in the M-�-
D were higher than those in the HP-�-CD for all chlorinated

olvents.
Immobilization mechanism of chlorinated solvents in

yclodextrin can be described by the capture of chlorinated
olvents into the cavity of cyclodextrins. The main parameter
f immobilization mechanism is the size or volume of cavity
nd chlorinated solvents. The molecular volume calculated from
ensity and molecular weight of PCE is 0.170 nm3. The cavity
olumes of �-, �-, and �-CD are 0.174, 0.262, and 0.427 nm3.
ecause the cavity of �-CD is similar to molecular volume of
CE, �-CD cannot easily capture PCE and stability constant of
CE in HP-�-CD was very small. In contrast, the cavity vol-
me of �-CDs is appropriate to capture PCE. In the case of
-CD, PCE can easily go out of cavity and binding strength
etween cavity molecules of �-CD and PCE was very weak
ecause the cavity volume is too big. So, the stability constant of
CE in HP-�-CD was lower than that in HP-�-CD. The molec-

lar volume of TCE is small (0.150 nm ) compared to PCE.
herefore, the stability constants of TCE in both, �- and �-CDs,
ere high and similar because the cavity volume of CDs was
roper to capture TCE. With same reason in PCE, the stabil-
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ig. 1. Stability constants of (A) single component and (B) multiple component
hlorinated solvents with similar volumes in cyclodextrins.

ty constant of TCE in HP-�-CD was low. Because volumes
f DCEs were smaller than those of �- and �-CDs, the stabil-
ty constant of DCEs in �-CD had the highest value. From the
esults, we concluded that the optimum cavity volume of CDs
as the range between 1.1 and 2 times of contaminant molecular
olume.

In the presence of multiple components of chlorinated sol-
ents, stability constants of PCE in HP-�-CD and M-�-CD
ncreased from 0.279 to 350 and 0.299 to 0.402, respectively.
tability constants of TCE also increased from 0.119 to 0.143
nd 0.136 to 0.169, respectively. But, stability constants of trans-
CE in HP-�-CD and M-�-CD decreased from 0.033 to 0.020

nd 0.049 to 0.021, respectively, and stability constants of cis-
CE decreased also from 0.053 to 0.049 and 0.090 to 0.064,

espectively. It means that PCE and TCE are more suitable to
omplex with �-CDs than DCEs because of the molecular vol-
me of PCE and TCE. So, cavities of �-CDs occupied originally
y DCEs are replaced by TCE or PCE. To calculate the solu-

ilization of chlorinated solvents, stability constants in single
omponent were used. However, difference of stability constants
etween single component and multiple components should be
onsidered for accurate estimation.

[

aterials B137 (2006) 1866–1869

. Conclusions

The stability constants of chlorinated solvent in cyclodextrins
ere obtained by head-space analysis in single and multiple

omponent systems. Stability constant of PCE at �-CDs was
he highest and that of TCE and DCEs at �-CDs was the high-
st. In a multiple component system, stability constants of PCE
nd TCE increased and those of DCEs decreased. To apply
yclodextrins to remediate real sites contaminated by chlori-
ated solvents, CDs mixed with � and � types are more suitable
n mixed contaminant system and the difference of stability con-
tants between single and multiple component systems should
e considered.
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